Package: BayesNetBP 1.6.1
BayesNetBP: Bayesian Network Belief Propagation
Belief propagation methods in Bayesian Networks to propagate evidence through the network. The implementation of these methods are based on the article: Cowell, RG (2005). Local Propagation in Conditional Gaussian Bayesian Networks <https://www.jmlr.org/papers/v6/cowell05a.html>. For details please see Yu et. al. (2020) BayesNetBP: An R Package for Probabilistic Reasoning in Bayesian Networks <doi:10.18637/jss.v094.i03>. The optional 'cyjShiny' package for running the Shiny app is available at <https://github.com/cytoscape/cyjShiny>. Please see the example in the documentation of 'runBayesNetApp' function for installing 'cyjShiny' package from GitHub.
Authors:
BayesNetBP_1.6.1.tar.gz
BayesNetBP_1.6.1.zip(r-4.5)BayesNetBP_1.6.1.zip(r-4.4)
BayesNetBP_1.6.1.tgz(r-4.4-any)
BayesNetBP_1.6.1.tar.gz(r-4.5-noble)BayesNetBP_1.6.1.tar.gz(r-4.4-noble)
BayesNetBP_1.6.1.tgz(r-4.4-emscripten)
BayesNetBP.pdf |BayesNetBP.html✨
BayesNetBP/json (API)
# Install 'BayesNetBP' in R: |
install.packages('BayesNetBP', repos = c('https://hyu-ub.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/hyu-ub/bayesnetbp/issues
- chest - A simulated data from the Chest Clinic example
- emission - A ClusterTree Example of Emission Model
- emission1000 - A simulated data from the Emission example
- liver - Mus Musculus HDL QTL data from Leduc et. al.
- toytree - A ClusterTree Example of Liver Model
- yeast - Saccharomyces Cerevisiae eQTL data from Kruglak et. al.
bayesian-networksconditional-gaussiannetwork-inferenceprobabilistic-graphical-models
Last updated 2 years agofrom:ba2c8a9ced. Checks:OK: 5. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 14 2024 |
R-4.5-win | OK | Nov 14 2024 |
R-4.5-linux | OK | Nov 14 2024 |
R-4.4-win | OK | Nov 14 2024 |
R-4.4-mac | OK | Nov 14 2024 |
Exports:AbsorbEvidencebn_to_graphNELClusterTreeCompileComputeKLDsElimTreeInitializeFactorQueryGetValueInitializerLocalModelCompileMarginalsPlotCGBNPlotMarginalsPlotTreePropagateqtlnet_to_graphNELrunBayesNetAppSamplerSummaryMarginals
Dependencies:backportsBiocGenericsbnlearnbootbroomclicolorspacecowplotcpp11DerivdoBydotCall64dplyrfansifarverfieldsgenericsggplot2gluegraphgtableigraphisobandlabelinglatticelifecyclemagrittrmapsMASSMatrixmgcvmicrobenchmarkmodelrmunsellnlmepillarpkgconfigpurrrR6RColorBrewerRcpprlangscalesspamstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr